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Abstract - This paper presents one-dimensional and two-dimensional Microwave Inverse Computing methods to 
detect an internal object using a signal applied from the surface of the host material. The modelling of our 
application system has been aimed towards the in-vivo detection of a breast tumour, in particular, and to enable 
the calculation of the tumour size and its distance from the surface of the breast. However, our approach is also 
applicable for more general foreign object identification.  
     Complex backscattered electromagnetic waves characterise the relations of the internal properties of the host 
material. Forward and backscattered signals are used to calculate the impedance and reflection coefficients as a 
function of the applied microwave frequency. In the study of one-dimensional modelling, we discuss the 
approach to identifying a foreign object hidden inside the host material and we present a method for computing 
the distance to the object from the surface of the host. Subsequently a cylindrical coordinate system is used for 
two-dimensional modelling. A method to compute the size of the object (up to one millimetre in radius) will be 
discussed. Computation of unknown electrical and non-electrical parameters using front-end microwave 
application is challenging but it is feasible.  
 
1. INTRODUCTION 
A non-destructive method of early stage breast tumour detection can make an important contribution towards the 
likelihood of successful treatment. The microwave signal we use in this application is harmless because it has a 
low power and therefore does not harm the normal cells. Screening mammography is the most effective method 
used for breast cancer detection but it suffers from a number of drawbacks such as; high false-positive and false-
negative rates, a possible risk factor, discomfort for the examinee and their difficulty in tolerating breast 
compression [13, 19]. In our approach the microwave signal applied from the surface of the breast skin requires 
a minimal compression of the breast for accurate measurements.  
     Earlier research carried out for internal property measurement of dairy products and food samples have 
shown that microwave imaging is feasible using a dielectric permittivity profile obtained from a suitable 
measuring system [20, 7]. Further, ex-vivo measurements taken using the Keam Holden VE2 analyser [9] have 
shown that a tumour has a significant difference in complex dielectric permittivity to that of healthy breast 
tissue. Recent studies by Harness et al. [4, 5] illustrate the opportunities for active microwave sensing in the 
breast. X. Li et al. [11, 1] have developed a time-domain approach using ultra wideband radar technique to 
investigate the presence and the location of malignant breast tumours.   
     We propose non-invasive methods that can be used to identify a very small tumour inside the breast. Our 
approach analyses the behaviour of the microwave signal and computes the distance from the surface of the host 
material. The type of signal used in this application is a uniform plane wave which penetrates through the non-
homogeneous internal structure. In practice, there are losses due to finite conductivity and lossy dielectric but 
these are usually very small and can be neglected [3, 17]. The behaviour of the signal with different material 
properties have led to general eqns which can be obtained from the well-known theory of electromagnetic wave 
propagation [16, 17]. Those eqns contain information on the electrical and magnetic properties of the internal 
structure and can be used to develop algorithms to compute the unknown parameters of the internal object. The 
front-end microwave measurement provides us with the required information which is needed to identify and 
then to compute these parameters. 
     The basic model for the microwave measurement system is shown in Figure 1. The measurement system 
provides the microwave signal to the antenna system which sends the radio signal into the host material. The 
backscattered signal from the internal structure of the host is received by the same antenna system and sends it 
back to the measurement system for analysis.  
     The measured data is then processed using the reconstruction algorithms. There are two main approaches in 
our study, one is to solve the inverse problem using the reflection coefficient measurements based on the multi-
layered plane wave reflection. The other approach is to consider the internal object as a “wave-scatter” and solve 
the two-dimensional inverse problem in cylindrical coordinates to compute the unknowns.  We have begun with 
simple canonical geometries in order to illustrate the general approach. The one-dimensional study is 
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straightforward but helps to understand the practical difficulties with accuracy when working with plane wave 
measurements. It is important because the computed results of the forward and inverse algorithms provide an 
insight into the subsequent two-dimensional and three-dimensional cases. 
     The two-dimensional study lays the groundwork for the practical computation of the inverse method using a 
simple microwave measurement system. Although the forward problem is simple the inverse problem in a two-
dimensional application may have practical complications due to the complexity of multiple scattering [12], 
multipath and diffraction effects in non-homogeneous internal structure of the host material. In order to avoid 
any incompatibility we treat both forward and inverse problems separately so that our inverse algorithm will be 
viable for the computation of unknowns based on measured data. The front-end antenna system receives the 
complex backscattered signal to provide the required data for our inverse algorithm. In both transmitted and 
received signals, amplitude and phase changes are expected and will be measured a number of times at different 
frequencies.  

 
                                            Figure 1. A basic model of the microwave measurement system. 
 
     The frequency of the microwave signal must have a constant value during the measurement time but it may 
be changed to another value for subsequent measurements. In practical application the reflection coefficients are 
calculated using the measured values of the forward and backward signals through the front-end antenna system. 
     The reflection coefficient at the front surface of the model for any given profile is given by  
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[2] where f represents the frequency of the microwave signal, Zin(f ) is the complex electrical impedance into the 
surface of the breast skin and  is the complex electrical impedance of the measurement system. 0Z
     Malignant tumours have increased protein hydration and therefore they have a significant contrast in 
dielectric properties with normal breast tissue [1, 21].  Because of the changes expected in internal properties, we 
first consider a simplified model of the internal structure of the breast as thin layers. Then a basic analytical 
system is constructed for forward and inverse computations to find front-end impedance and the thicknesses of 
the layers. 
 
2. ONE-DIMENSIONAL STUDY  
In the following sections we analyse the time and space dependence of the microwave signal within the 
application model. The plane wave reflection model is shown in Figure 2.  
     The internal structure of the host material is represented using a number of regions, each of which is 
homogeneous. In particular, we assume that the electrical properties are constant over each of these regions. For 
the one-dimensional model, the regions are a number of thin rectangular layers which have been cascaded to 
form the host material.  
     The layers inside the model are specified with individual material properties. These are permittivity ε, 
permeability µ and conductivity σ and they characterise the media with electric flux, magnetic flux and the 
electric current, respectively. When the microwave signal is applied from the front it penetrates through the 
layers and, if the properties of any two layers differ from each other, it reflects back from the boundary between 
them. Similarly, looking from the electrical view point, it can be observed that each of these layers must have 
individual impedances in the presence of uniform plane waves. In order to find the reflection from the surface of 
the host it is necessary to perform a series of impedance transformations at the layer boundaries.  
     The impedance transformation towards the front end can be seen as a belt with n cascaded strips, looking 
from the front, as shown in Figure 2. We consider the host internal structure to be loss less (σ = 0) for the 
electromagnetic waves and therefore that the wave propagation depends only upon the complex value of the 
propagation constant [8].  
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Figure 2. Plane wave reflection model. 

 
(a) Impedance transformation 
The front-end impedances of the layers are indicated as Z(.) (looking from the front) and the first and last layer 
impedances are taken as Zin and Zn+1 respectively. For simplicity, in the reminder of this paper the magnetic 
permeability µ is assumed to be unity, but this is not a restriction for this application. The recursive eqn to find 
the electrical impedance [16] at the front of the nth layer of the model that has a width of dn is 
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where )( fnη  is the intrinsic or characteristic impedance of the nth layer given by,  
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and 0η  is the intrinsic impedance in a vacuum and is approximately equal to 377 Ohms. The nε is the relative 
permittivity of the nth layer. Here, βn(f) represents the phase constant of the nth layer given by  
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where c is the velocity of light given as approximately  m/s and f is the frequency of the microwave 
signal. 

8103 ×

     Using eqn (2), the front-end impedance of any layer can be calculated when given the characteristic 
impedance and the propagation constant of that layer and the load impedance of the succeeding layer. Starting 
with the known impedance of the last layer (the deepest layer of the model), the layer impedances can be 
computed from layer to layer backward up to the surface of the front layer. Finally this result is used to compute 
the reflection coefficient using eqn (1).  
     If there are three layers having thicknesses of dn-1, dn and dn+1 the front-end impedance of the (n-1)th layer at 
the frequency fi can be found by substituting Zn in the eqn that is obtained for Zn-1 using the eqn (2). Then at 
frequency fi, 
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where Zi, βi and ηi represent the front–end impedance, phase constant and characteristic impedance, respectively 
(at the frequency fi) and 1−=j . 
      Using the above eqn we can obtain two different eqns using two frequencies (i=1 and i=2) and those eqns 
can be used to find the two unknowns in Zn and Zn-1 layers. 
     Equation (5) calculates the front-end impedance without knowing the front-end impedance Zn of the middle 
layer. Similarly this procedure can be continued up to the first layer of our model to calculate the front-end 
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impedance, Zin (f).  The final eqn of this process would be a large and complicated eqn which has a number of 
unknowns. We can obtain i eqns for i frequencies and those eqns can be used to find the i unknowns. 
     If the reflection coefficients are known from the measurement system then we can find the front-end 
impedance of the host material and this can be used to find the unknowns (this will be explained below).  
 
(b) Layer thickness calculation 
Using the microwave antenna system we can measure the front-end impedance, Zin (f) of the host material. 
Suppose we know the front-end impedance by practical measurement. Then the new task is to find the distance 
to the object from the surface of the host. The total distance is the sum of the individual widths of each layer. 
This can be calculated using inverse eqns derived from the eqn (5). 
     If we take the three layers, the distance to the (n-1)th layer from the (n+1)th layer can be obtained from 
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     By following the above procedure, we can find a similar eqn for even more than three layers. In the eqn (6), 
we have two unknowns, dn-1 and dn. For simplicity we assume Zn+1 =0. Then using eqn (6) we obtain a general 
eqn as  
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where  is the microwave frequency applied at each measurement, and i=1,2,....,m.  if
     As there is more than one unknown, it is not possible to obtain a direct solution using a single eqn. Therefore 
we obtain m eqns from m trials each applying a different frequency into the system. In order to find the 
unknowns we use an algorithm based on Newton’s iterative method [10].  
     Let our unknowns be the thicknesses of the layers. Then the set of eqns are; 
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We form the  Jacobian matrix of the above system of eqns. That is; nn×

                                                     ][ , lkJJ =                                                                                       (9) 
where  , /k l k lJ F d= ∂ ∂   and    k, l = 1, 2,...., n . 
     Using the initial guess for X(0) = (d1(g), d2(g),…. ,dn(g))T , we carry out a nonlinear multidimensional 
Newton’s method [14] to search for the solution to . The solution of the above system often needs 
several iterations and the number of these mainly depends upon the number of unknowns and the value of the 
initial guess. 

0)( =XF

 
(c) Results of the one-dimensional model 
(i) Front-end Impedance 
Using eqn (2), the front-end impedance of 10 layers was calculated recursively. Starting with the last layer, Zn+1, 
the calculation is carried out from layer to layer backward up to the first layer, Z1. The simulation results have 
been plotted in Figure 3. The plot (1) is for the layers having electrical properties similar to normal breast tissue. 
The plot (2) is similar except that the last layer’s electrical properties are set to be similar to those of a breast 
tumour.  
     There is a significant difference in front-end impedance when the permittivity, the dielectric constant, of the 
last layer is 50 rather than 10 as in the other layers. Therefore with our detection system there should be a high 
probability of identifying an internal object with significantly different material properties to its surroundings. 
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                                                       Figure 3. Plot of the layers’ front impedance. 
(ii) Distance calculation   
Finding the layer thicknesses is important because the arithmetic addition of each of these thicknesses will give 
the distance from the surface to the boundary of the layer of our interest. For an example, we tested our 
algorithm by computing the layer thicknesses of two layers (n=2) of our model. Using eqn (5) we first calculated 
the front-end impedances of the (n-1)th layer for two different frequencies. The layer thicknesses of  the nth layer 
and the (n-1)th layer are taken as 0.002 and 0.004 metres respectively. Now, by knowing the values of  and 

 for two different frequencies, we estimate the values d1 and d2 using two eqns of the form of eqn (7). That 
is         
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     The solution for d1and d2 was computed using Newton’s method [10] in MATLAB and the results are plotted 
in Figure 4 (Newton’s method is further explained in the two-dimensional study.). The two graphs show that the 
approximations to d1 and d2 in F1 and F2 rapidly approach the exact values of d1=0.002 metres and d2=0.004 
metres. 
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Figure 4. Computed results of layer thicknesses, d1 and d2. 

 
3. TWO-DIMENSIONAL STUDY  
In this approach we consider the internal object as a conducting cylinder which has a radius in millimetres. The 
microwave signal application system is almost the same as Figure 1 but the model of the host material is 
different from the one-dimensional case. The two-dimensional model with cylindrical coordinates is shown in 
Figure 5. This model analyses the behaviour of the microwave signal propagation and scattering effect at the 
boundary of the cylinder (the circle with the radius a represents the cylinder in the model). 

300 
 (1) :  |Zi|  with identical electrical properties 
 (2) :  |Zi|  with non-identical electrical properties   
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Figure 5. Two-dimensional model with cylindrical coordinates. 

 
      We consider this to be a single scatter problem and construct the electromagnetic wave eqns for the forward 
and scattered fields using the solutions to the scalar Helmholtz eqn [6]. Our discussion of the two-dimensional 
model is restricted to the conducting cylinder, here the extension to the case of a non-conducting cylinder having 
dielectric with the parameters µ and ε similar to those of a breast tumour can be developed as in [15] and [18]. In 
this latter case the boundary conditions of the normal and scattering fields of the cylinder will be based on the 
wave impedance that we discussed in the one-dimensional model. 
     A plane wave incident upon the host material can be expressed in terms of cylindrical waves [6]. The incident 
wave at the host material is z-polarised and travelling in the x direction as shown in Figure 5.  The forward 
incident wave of frequency f is  
                                                                                                               (12) φcos
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where p is the radial distance from the centre of the cylinder,  is the angle with respect to the x direction and k 
is the wave number of the medium given by, 
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 The wave number is expressed in terms of ε  the permittivity of the medium, µ the permeability of the medium 
and c the velocity of light. 
     The wave is finite at the origin and periodic in φ with period 2π. Therefore the solution to the eqn (12) can be 
found as,    
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     For the outward-travelling waves due to scattering at the cylinder boundaries, the scattered field is  
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Considering the boundary condition of the cylinder, the total field at the point o  given by eqn (16) can be re-
written using eqns (14) and (15).  
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Equation (17) is the general wave eqn that can be used to find the total field at any point  in our two-
dimensional model. Now, suppose the point  is rotated to the point  where  lies along the x axis. If we 
consider this model for the breast tumour case then the distance  is the distance to the centre of the tumour 
from the surface of the breast. The eqn after rotating the point  into point  is 
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      The computational cost of the inverse process depends on the number of arithmetic operations required to 
calculate (18) accurately. It can be reduced by combining terms with positive and negative values of n. The new 
eqn is          
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Equation (19) is the general eqn we use to find the unknowns for the two-dimensional model. Using a similar 
approach to that used in the one-dimensional case, Ez(f) can be measured and then eqn (19) may be numerically 
inverted in order to determine a and d. 
 
Results of the two-dimensional study 
In the forward problem a and d are known at a single location of the cylinder and the amplitude values of the 
scattering field at each frequency have to be computed. In the inverse problem the field quantity at the receiver is 
known by measurement and a and d are the unknowns. 
     In order to find the two unknowns a and d, we use eqn (19) to obtain two different eqns by applying two 
different frequencies. In the practical situation we can measure Ez(f) for these two frequencies and proceed to 
compute the two unknowns. In the analytical study we used reasonable values for a and d (a=0.002metres and 
d=0.04metres) to calculate two Ez(f) values. As there are Bessel and Hankel functions inside the summation of 
the eqn, it is necessary to handle eqn (19) carefully to obtain the correct answer for Ez(f).  
     Again we have two eqns of the form 

                                                           1,

2 ,

( , ) 0
( , ) 0

z

z

E a d
E a d

=

=
                                                                      (20) 

where we now use the subscripts 1 and 2 to indicate two different frequencies. 
Solution of the inverse problem leads to the internal object reconstruction and the routine is summarised as 
follows. 
     We start from an initial approximation to our unknowns, X(0) = (a0, d0)T. Subsequent improvements to this 
approximation X(N) = (aN, dN)T ,  N=1,2,…, are obtained by the following steps: 
      1). Compute the field component based on the incident and the scattered field. The circular boundary of   the 

cylinder is the cause of the potential scatter and the angle φ determines the receiver location for the 
measuring system. The wave number k is frequency dependent and there exists a field component for each 
frequency. 

      2). Form the difference of the field vectors by subtracting the calculated field components from the measured 
electric fields. 

      3). Construct the  Jacobian matrix Jl,m, l, m = 1, 2,…, n, which is necessary in Newton’s method to find 
the minimum difference in ‘2’ above.  

nn×

      4). Obtain the correction vector and form the implicit function for the vector X(N) to update the computed 
values of unknowns in the vector X(N-1) [10, 14 ].   

      5). Repeat the steps 1-4 until the vector X(N) satisfies some suitable stopping criteria. 
     Following the above procedure the two unknowns were computed. The result is shown in Figure 6. The two 
graphs show that the approximations to a and d in E1 and E2 rapidly approach the exact values of a=0.002 metres 
and d=0.04 metres. 
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                           Figure 6. Plot of calculated values of ‘a’ and ‘d’ using Newton’s method. 
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     The plot of E1 and E2 versus number of iterations is shown in Figure 7. Both E1 and E2 converge towards zero 
as a and d approach 0.002 metres and 0.04 metres, respectively (approximately after 12 iterations).  
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                                      Figure 7. Plots of E1and E2 versus number of iterations. 
 
     When we determine Ez(f), we use eqn (19), truncating the series at successively larger values of n until we 
obtain a steady value for Ez(f). The value of n will depend on the values of frequency, distance d, radius a and 
the electrical parameters of the medium. Care must be taken when testing for convergence of eqn (19) since the 
solution oscillates with respect to n. The accuracy of the initial guess can also be a limitation. 
 
     We carried out a number of simulations to test our inverse algorithm for convergence. First, using the forward 
method, the values of Ez(f) and Ez(f) were calculated for the values of  a and d equal to 0.002 metres and 0.04 
metres respectively. Those results were used in our inverse algorithm to test for the convergence using a range of 
initial (guess) values of a and d. The selected range starts from a=0.001 metres and d=0.03 metres and changed 
by 0.0002 and 0.002 up to a=0.003 metres and d=0.05 metres respectively. Every pair of initial values were 
tested separately and the number of iterations, N, required for convergence is counted after every simulation and 
the result is shown in Figure 8. The x and y axes represent the initial values of a and d, respectively. Every grid 
point has a corresponding set of  a and d initial values and the number of iterations (N) required for the 
convergence can be found at the grid point.  
 

 
 

Figure 8. Result of the simulations for convergence 
 using different initial values of a and d. 

 
     When the initial values are far away from the true values we require a large number of iterations and 
furthermore there exists a range beyond which we cannot expect any accuracy in the convergence. In our test, a 
and d can vary up to and from their actual values, respectively. For our example we found 
a=0.001:0.003 and d=0.03:0.48 is  safe range for convergence with a reasonable number of iterations. We 
suggest that in general 20 iterations are used in order to determine whether the process is within a safe range 

5 0 %± 2 5 %±
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before restarting the iteration process with alternative starting values for a and d. It is important to display the 
result with double precision in order to identify the exact solution.  
 

Table 1: Result of the error analysis. 
Measurement  error  Error in a  Error in d 
            1%       2.1%        0.005% 
            2%       5.1%        0.125% 
            3%     10.5%        0.16% 
            5%     18.5%        0.31% 
           7.5%     29.5%        0.41% 
           10%     41.5%        0.54% 

   
      We carried out an error analysis to study the robustness of the inverse computation method with respect to 
measurement errors in the forward system. We added errors into Ez(f1) and Ez(f2) and simulated to find the 
corresponding errors in a and d values. Those values are tabulated in Table 1. The percentage error in a is quite 
large with large measurement errors. We should note that our original value of a is small (d is twenty times 
larger than a) compared to d. However in general, d is less sensitive to measurement errors than a. 
     In practice some form of calibration could be performed to reduce the influence of measurement error. This 
could consist, for example, of normalising the measurement data to measured data taken where it is known that 
there are no scattering objects present. 
 
CONCLUSIONS 
The microwave inverse computing method we used in this study has demonstrated how we can use the 
differences in microwave signal behaviour at a high contrast in material properties. In the one-dimensional 
model a layer of high permittivity equivalent to that of a breast tumour is capable of providing a significant 
difference in front-end impedance. Therefore by the reflection coefficients obtained in microwave in-vivo 
measurements, identification of a breast tumour should be feasible. Similarly the algorithm developed for three 
layers indicates that the computation of the distance to the cancer from the breast skin surface will be possible. 
     Two-dimensional study of the microwave inverse computing method has proved its capability of estimating 
the tumour distance in the breast model.  Apart from that, it can estimate the size of the tumour by calculating the 
radius of the cylinder of our model. The tests carried out for a range of initial values have demonstrated that our 
algorithm can detect a millimetre size internal object and estimate the radius and the distance from the surface of 
the host.  
     Further work will use 3-dimensional modelling with a similar approach. This will provide more capability to 
compute accurate dimensions of a breast tumour. We plan to construct an image profile to identify an internal 
object using in-vivo microwave measurements. 
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